
Open Source AI Tool Review
By True Theta

"Python's 'multiprocessing' module, but for clusters"
Ray is an open-source distributed computing framework for Al applications, 
simplifying cluster management by coordinating tasks across multiple machines. 
Developers can write Python (or Java/C++) functions to run across nodes, with built-in 
workload scheduling, resource management, and fault tolerance. Its core abstractions 
(tasks, actors, and distributed objects) support use cases from small parallel scripts to 
large-scale production clusters.

Usage Sample

Industry Use Cases of Ray

Uber: Achieved a 40x performance boost in 
marketplace optimization tasks.

Tasks and Actors
Tasks: Stateless, 
asynchronous functions that 
return results as futures

Core Building
Blocks

● ray.remote()
● ray.init()
● ray.put()
● ray.wait()

Efficient 
Data Sharing

Uses distributed memory for 
large data and optimizes 
small data transfers to 
minimize overhead

Automatic Memory 
Management

Ray tracks and clears 
unused data to optimize 
memory usage.

Instacart: Reduced zone-level model
training time from hours to minutes, improving 
resource utilization.

Pinterest: Increased developer velocity
by 6x and optimized GPU usage to over
90% efficiency.

Strengths

Easy to evolve from prototype to production
Diverse small-scale ML projects (e.g. local notebooks) can be scaled out to 
clusters in production.

Flexibility
Ray works well with stateful or iterative ML tasks (e.g. reinforcement 
learning, hyperparameter tuning), which can be difficult with alternatives 
like Spark's batch-centric model.

Heterogeneous resource management
It manages CPUS, GPUs, and specialized hardware (e.g. DSPs for edge 
devices), enabling cost-effective scaling and high resource utilization. 

Weaknesses

Provides ML-oriented tools built on top of Ray
Ray Tune for hyperparameter optimization, Ray Serve for model 
deployment, and Ray Data for distributed data processing

Young software ecosystem
Relative to Spark, Ray's ecosystem is new and less developed. Ray 
has less complete functionality for data connectors, streaming 
data, observability, debugging, security, SQL-optimizations, and 
code governance.

Cluster management
Ray tools like KubeRay or Ray autoscaler require configuration, 
adding setup effort for production clusters.

Hybrid architectures
Teams may need to maintain Spark for data preparation while 
using Ray for workloads, adding pipeline complexity.

Actors: Stateful classes that 
manage and retain data 
across distributed machines

For distributed model training, add a few lines (see arrows) 
to a PyTorch training routine:

Core Abstraction
of Ray

https://github.com/ray-project/ray
https://www.uber.com/blog/how-uber-uses-ray-to-optimize-the-rides-business/
https://tech.instacart.com/distributed-machine-learning-at-instacart-4b11d7569423
https://tech.instacart.com/distributed-machine-learning-at-instacart-4b11d7569423
https://medium.com/pinterest-engineering/last-mile-data-processing-with-ray-629affbf34ff
https://medium.com/pinterest-engineering/last-mile-data-processing-with-ray-629affbf34ff
https://medium.com/pinterest-engineering/last-mile-data-processing-with-ray-629affbf34ff

	Slide 1

